有关数学说课稿模板锦集6篇
作为一位不辞辛劳的人民教师,有必要进行细致的说课稿准备工作,说课稿是进行说课准备的文稿,有着至关重要的作用。那么你有了解过说课稿吗?以下是小编为大家整理的数学说课稿6篇,仅供参考,欢迎大家阅读。
数学说课稿 篇1今天我说课的内容是高二立体几何(人教版)第九章第二章节第八小节《棱锥》的第一课时:《棱锥的概念和性质》。下面我就从教材分析、教法、学法和教学程序四个方面对本课的教学设计进行说明。
一、说教材
1、本节在教材中的地位和作用:
本节是棱柱的后续内容,又是学习球的必要基础。第一课时的教学目的是让学生掌握棱锥的一些必要的基础知识,同时培养学生猜想、类比、比较、转化的能力。著名的生物学家达尔文说:“最有价值的知识是关于方法和能力的知识”,因此,应该利用这节课培养学生学习方法、提高学习能力。
2. 教学目标确定:
(1)能力训练要求
①使学生了解棱锥及其底面、侧面、侧棱、顶点、高的概念。
②使学生掌握截面的性质定理,正棱锥的性质及各元素间的关系式。
(2)德育渗透目标
①培养学生善于通过观察分析实物形状到归纳其性质的能力。
②提高学生对事物的感性认识到理性认识的能力。
③培养学生“理论源于实践,用于实践”的观点。
3. 教学重点、难点确定:
重 点:1.棱锥的截面性质定理 2.正棱锥的性质。
难 点:培养学生善于比较,从比较中发现事物与事物的区别。
二、说教学方法和手段
1、教法:
“以学生参与为标志,以启迪学生思维,培养学生创新能力为核心”。
在教学中根据高中生心理特点和教学进度需要,设置一些启发性题目,采用启发式诱导法,讲练结合,发挥教师主导作用,体现学生主体地位。
2、教学手段:
根据《教学大纲》中“坚持启发式,反对注入式”的教学要求,针对本节课概念性强,思维量大,整节课以启发学生观察思考、分析讨论为主,采用“多媒体引导点拨”的教学方法以多媒体演示为载体,以“引导思考”为核心,设计课件展示,并引导学生沿着积极的思维方向,逐步达到即定的教学目标,发展学生的逻辑思维能力;学生在教师营造的“可探索”的环境里,积极参与,生动活泼地获取知识,掌握规律、主动发现、积极探索。
三、说学法:
这节课的核心是棱锥的截面性质定理,.正棱锥的性质。教学的指导思想是:遵循由已知(棱柱)探究未知(棱锥)、由一般(棱锥)到特殊(正棱锥)的认识规律,启发学生反复思考,不断内化成为自己的认知结构。
四、 学程序:
[复习引入新课]
1.棱柱的性质:(1)侧棱都相等,侧面是平行四边形
(2)两个底面与平行于底面的截面是全等的多边形
(3)过不相邻的两条侧棱的截面是平行四边形
2.几个重要的四棱柱:平行六面体、直平行六面体、长方体、正方体
思考:如果将棱柱的上底面给缩小成一个点,那么我们得到的将会是什么样的体呢?
[讲授新课]
1、棱锥的基本概念
(1).棱锥及其底面、侧面、侧棱、顶点、高、对角面的概念
(2).棱锥的表示方法、分类
2、棱锥的性质
(1). 截面性质定理:如果棱锥被平行于底面的平面所截,那么截面和底面相似,并且它们面积的比等于截得的棱锥的高与已知棱锥的高的平方比
已知:如图(略),在棱锥S-AC中,SH是高,截面A’B’C’D’E’平行于底面,并与SH交于H’。
证明:(略)
引申:如果棱锥被平行于底面的平面所截,则截得的小棱锥与已知棱锥
的侧面积比也等于它们对应高的平方比、等于它们的底面积之比。
(2).正棱锥的定义及基本性质:
正棱锥的定义:①底面是正多边形
②顶点在底面的射影是底面的中心
①各侧棱相等,各侧面是全等的等腰三角形;各等腰三角形底边上的高相等,它们叫做正棱锥的斜高;
②棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形;
棱锥的高、侧棱和侧棱在底面内的射影也组成一个直角三角形
引申: ①正棱锥的侧棱与底面所成的角都相等;
②正棱锥的侧面与底面所成的二面角相等;
(3)正棱锥的各元素间的关系
下面我们结合图形,进一步探讨正棱锥中各元素间的关系,为研究方便将课本 图9-74(略)正棱锥中的棱锥S-OBM从整个图中拿出来研究。
引申:
①观察图中三棱锥S-OBM的侧面三角形状有何特点?
(可证得∠SOM =∠SOB =∠SMB =∠OMB =900,所以侧面全是直角三角形。)
②若分别假设正棱锥的高SO= h,斜高SM= h’,底面边长的一半BM= a/2,底面正多边形外接圆半径OB=R,内切圆半径OM= r,侧棱SB=L,侧面与底面的二面角∠SMO= α ,侧棱与底面组成的角 ∠SBO= β, ∠BOM=1800/n (n为底面正多边形的边数)请试通过三角形得出以上各元素间的关系式。
(课后思考题)
[例题分析]
例1.若一个正棱锥每一个侧面的顶角都是600,则这个棱锥一定不是( )
A.三棱锥 B.四棱锥 C.五棱锥 D.六棱锥
(答案:D)
例2.如图已知正三棱锥S-ABC的高SO=h,斜高SM=L,求经过SO的中点且平行于底面的截面△A’B’C’的面积。
解析及图略
例3.已知正四棱锥的棱长和底面边长均为a,求:
(1)侧面与底面所成角α的余弦(2)相邻两个侧面所成角β的余弦
解析及图略
【课堂练习】
1、 知一个正六棱锥的高为h,侧棱为L,求它的底面边长和斜高。
解析及图略
2、 锥被平行与底面的平面所截,若截面面积与底面面积之比为1∶2,求此棱锥的高被分成的两段(从顶点到截面和从截面到底面)之比。
解析及图略
【课堂小结】
一:棱锥的基本概念及表示、分类
二:棱锥的性质
1. 截面性质定理:如果棱锥被平行于底面的平面所截,那么截面和底面相似,并且它们面积的比等于截得的棱锥的高与已知棱锥的高的平方比
引申:如果棱锥被平行于底面的平面所截,则截得的小棱锥与已知棱锥的侧面积比也等于它们对应高的平方比、等于它们的底面积之比。
2.正棱 ……此处隐藏4675个字……/p>
1、教材的地位
二元一次方程组是最简单的多元(未知数的个数不止一个)方程组,通过对它的学习,可以了解的多元一次方程组的概念和解法的基本思路。一元一次方程的知识是学习二元一次方程组的基础。本节课是在七年级上册已有的“一元一次方程”的基础上进一步讨论方程(组),为学生初中阶段学好必备的代数,几何的基础与基本技能,解决实际问题打下基础,同时提高学生能力,培养他们对数学的兴趣,以及对他们进行思想教育方面有独特的意义,同时,对后续教学内容起到奠基作用。
2、教学目标
使学生掌握二元一次方程、二元一次方程组的概念,会把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式。使学生了解二元一次方程、二元一次方程组的解的含义,会检验一对数是不是它们的解。
3、重点、难点
重点:是学生认识到一对数必须同时满足两个二元一次方程,才是相应的二元一次方程组的解。掌握检验一对数是否是某个二元一次方程的解的书写格式。
难点:理解二元一次方程组的解的含义。
二、教法
启发诱导学生自主探究、充分发挥学生的主体地位、借助多媒体增加课堂容量。
三、学法
“问题”是数学教学的心脏,活动是数学教学中的灵魂。所以我在学生思维最近发展区内设置并提出一系列问题,通过数学活动,引导学生:自主性学习,合作式学习,探究式学习等,激发学生的学习兴趣,提高学生的数学思维和参与度,力求学生在“双基”数学能力和理性精神方面得到一定发展。
四、教学过程
1、教与学互动设计:通过“篮球比赛积分问题”让学生感受到用二元一次方程组能够很好的刻画问题中的数量关系,为二元一次方程和二元一次方程组做准备。通过小组讨论的方法,来调动学生学习的积极性。
2、合作交流,解读探究:通过上述的两个方程对新的知识让学生进行讨论交流。呼应新课标理念中让学生“动”起来,教师引导、学生自主学习的理念,进行新课的学习。
3、课堂练习:用幻灯片展示的习题,学生通过习题巩固本节课知识,更加充分的理解二元一次方程组的相关内容。
4、课堂小结及布置作业:通过小结及做习题反馈学生对本节课的收获。
五、教学反思
生命在活动中丰富,为孩子的一生幸福奠定基础,是活动教学的终极价值追求;课堂在活动中精彩,强调通过师生之间丰富多彩的主体活动“唤醒”沉睡的课堂,实现课堂教学的重建;学生在活动中发展,教师在活动中成长。由于我能力有限,还请各位领导、老师和同学批评指正。
附:板书设计
8、1二元一次方程组
xy=222xy=40
二元一次方程二元一次方程组
二元一次方程的解二元一次方程组的解
数学说课稿 篇6各位评委、各位专家你们好:
我说课的课题是《分数与整数相乘》,它是小学数学国标本苏教版第十一册第三单元《分数乘法》的第一课时的教学内容,它是在学生已经掌握整数乘法,理解分数的意义和基本性质,能正确计算分数加、减法的基础上进行教学的。通过教学,为学生进一步学习分数除法和分数四则混合运算,以及解决更多有关分数的简单实际问题奠定基础。本课时内容教材安排了一个例题,例1教材以做绸花为素材,引导学生初步理解求几个几分之几是多少,可以用乘法计算,探索并掌握分数与整数相乘的计算方法。安排了配套练习“练一练”以及练习八1-5题,通过各种形式的练习,进一步使学生理解分数乘整数的计算方法,并形成相应的计算技能以及培养解决问题的能力。
基于以上对教材的理解,以学生我拟定了以下教学目标:
1.使学生通过自主探索、理解分数乘整数的意义与整数乘法相同,初步理解分数乘整数的计算法则。
2.使学生进一步增强运用已有知识经验探索并解决问题的意识,体验探索学习的乐趣。
3.使学生在积极参与数学的过程中,养成独立思考,主动与他人合作交流,进一步树立学好数学的信心。
本课的教学重点兼难点是:分数乘整数的意义和计算法则。
结合上述我对教材的认识,及学生现有的知识水平。我预设了以下教学过程:
整个教学过程分4个环节:
第一环节:创设情境,引入新知。出示例1中长方形直条图,指导学生弄清题意,知道这根长方形的直条表示1米长的绸带,而把它平均分成10份,其中3份也就是3/10米用来做一朵绸花。出示第(1)小题,组织学生涂色表示做3朵这样的绸花所用的米数。[通过涂色,既激活学生对加法和乘法已有认识,又启发学生列出不同算式解决问题]。指名交流,交流时说说:“解决这个问题可以怎样列式,你是怎么想的?”学生可能列出3/10+3/10+3/10或3/10×3或3×3/10。[通过学生的观察、涂色、交流,使学生初步认识到求几个相同几分之几的既可以用加法计算,也可以用乘法计算]。教师板书课题:分数与整数相乘。
二.自主研究,理解算理。这里分成3个层次指导学生探索。第1层:自主探索,尝试计算。学生尝试计算3/10×3,我将启发学生联系已有知识水平说明为什么3/10×3的积是9/10呢?①学生在联系加法写出3/10+3/10+3/10=(3+3+3)/10=9/10时,进一步启发写成(3×3)/10=9/10。②通过学生尝试,使他们明确3/10是3个1/10,所以3×3/10就是9个1/10是9/10,从而使学生进一步理解分母不变,分子与整数相乘的计算法则。最后请学生小结3/10×3可以如何计算。[阶段小结不仅可以加深学生的知识印象,更能使学生在讨论中进一步掌握分析问题的方法]。
第2层次是及时巩固,加深理解。投影出示问题:小华做5朵这样的绸花,一共用几分之几米绸带?学生各自轻声读题,尝试列式计算。指名板演。在评点学生板演时,适时明确:计算时可以先约分再计算,并规范书写格式[尝试联系、适时点评、规范格式可以使学生进一步完善对分数与整数相乘的计算方法]。
第3层次:尝试比较,深化算理。引导学生比较刚才两道乘法算式的计算过程,找出异同,先独自比较,然后小组交流,最后全班交流。[在比较、交流过程中一方面进一步明确计算方法,同时学生也经历了自我提升的过程]。
第三环节巩固练习,深化理解。首先是基本练习,帮助学生进一步掌握算法,并初步形成技能。练一练第2题,计算4道分数乘法,学生独立完成,展示作业,集体评议并说说计算时要注意什么。练习八第1题,让学生独立完成填空,组织交流:列出哪几道算式?列出的乘法算式与加法算式有什么联系?其次是综合练习,使学生从不同角度丰富对“求几个几分之几相加的和,可以用乘法计算”的认识,培养解决简单实际问题的能力。练习八3-5题学生独立解答,列式计算,投影板演,并说出每题思考过程。突出:求几个几分之几相加的和可以用乘法计算。
四.全课总结,通过学习,你有什么收获,还有什么不明白的地方,集体讨论。
各位评委、各位专家,以上是我的教学设想。根据课堂教学的生成我会做一些适当调整。谢谢!
文档为doc格式